Roll No. \square Total No. of Pages : 02
Total No. of Questions: 09

> B.Tech.(IT) (2018 Batch) (Sem.-3)
> MATHEMATICS-III
> Subject Code : BTAM-301-18
> M.Code : 76393

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) Show that the function $f(x, y)=\frac{2 x^{2} y}{x^{4} \square y^{2}}$ has no limit as (x, y) approaches $(0,0)$.
b) Find the local extreghe values of the function $f(x, y)=x^{3}-y^{3}-2 x y+6$.
c) Sketch the resion of integration for the integral

$$
\int_{0}^{\sin x} \int_{0}^{\mu} y d y d x
$$

and write an integral with the order of integration reversed.
d) Define convergence of a series and give an example of a convergent series.
e) Explain the limit comparison test.
f) By inspection obtain the integrating factor and solve the differential equation :

$$
x d x=y d y+2\left(x^{2}+y^{2}\right) d x=0
$$

g) Check whether the following differential equation exact.

$$
\left(2 x+e^{y}\right) d x+x e^{y} d y=0
$$

h) Find the general solution of the differential equation $y+2 y+y=0$
i) Verify whether the linear combination of e^{x} and $e^{-2 x}$ is a solution of the differential equation

$$
y+y-2 y=0
$$

j) Find the Wronskian of the functions x, x^{2} and x^{3}.

SECTION-B

2. Solve the following integral

$$
\int_{0}^{\ln 2} \int_{0}^{\sqrt{(\ln 2)^{2} \square y^{2}}} e^{\sqrt{x^{2} \square y^{2}}} d x d y
$$

by converting it into an equivalent polar integral.
3. For what values of x does the following power series converge ?

$$
{ }_{n \square 1}^{\square}(\square 1)^{n \square 1} \frac{x^{n}}{n}
$$

4. Solve the differential equation $\left(3 x^{2} y^{3} e^{y}+y^{3}+y^{2}\right) d x+\left(x^{3} y^{3} e^{y}-x y\right) d y=0$.
5. Solve the differential equation $y|+4 y|+4 y=e^{-2 x} \sin x$ by using method of variation of parameters.
6. Check the convergence off fre following series
(i) ${ }_{n \square 1}^{\square!n!}$
$\log _{\text {(ii) }}^{\frac{1}{\sqrt{n} \ln n}}$

SECTION-C

7. a) Find the maximum and minimum values of the function $f(x, y)=3 x+4 y$ on the circle $x^{2}+y^{2}=1$
b) Find the volume in the first octant bounded by the coordinate planes and the surface $z=4-x^{2}-y$.
8. State and prove Leibniz's test for alternating series.
9. Find the general solution of the equation $x^{3} y-3 x y+3 y=16 x+9 x^{2} \ln x$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

